Functionalization of polycaprolactone using glycidyl methacrylate in supercritical carbon dioxide for polycaprolactone-starch blend

M. Iqbal, C. Mensen, Q. Xian, A. A. Broekhuis, F. Picchioni

Department of Chemical Engineering/Product Technology, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

Outline

- Introduction
- Research strategy
- Results and discussions
- Conclusions

Introduction

Plastic supply chain and waste management

Plastics from cradle to cradle in Europe (2008)

- The use of plastic is 'irreplaceable'
- High demand of plastics requires high amount raw material
- High amount of plastic waste generated every year and most of the waste end up in the disposal

Bioplastic

- The focus here is on their functionality 'compostability'.
 - Compostable plastics certified according to EN13432 and based on renewable (biobased) and/or non-renewable (fossil) resources
- The focus here is their *raw materials basis*.
 - Biobased plastics produced on the basis of **renewable resources**
 - sugar family
 - vegetable oils and animals fat
 - proteins
 - chitosan
 - etc.

Bioplastic based on polycaprolactone (PCL) and starch

PCL

- + 100% biodegradable
- + Good mechanical properties
- Expensive

Starch

- + 100% biodegradable
- Poor mechanical properties
- + Abundant

blend

bioplastic

PCL-starch blends

a.

Morphology of starch/PCL binary blends. (a) S/PCL 10/90, (b) S/PCL 20/80 Blend process is using a (c) Brabender batch-mixer

- PCL interacts poorly with starch
- compatibilizer is required to improve the interaction

Compatibilizer precursor for PCL-starch blends

• PCL grafted by glycidyl methacrylate (GMA) is used as compatibilzer precursor

Ternary blends of PCL-compatibilizer-starch

- Grafted monomers site interacts with starch
- PCL backbone of the compatibilizer interacts with PCL

 Thermal degradation of PCL backbone occurred during the grafting process (batch-kneader mixing)

• Grafting under supercritical CO₂ at a lower temperature !!!

Results and discussions

PCL-g-GMA synthesis

Methods	T (°C)	P (bar)	t (min)	Stirring (rpm)	initiator
Melt	130	-	15	80	benzoyl peroxide
Supercritical CO ₂	97	90	40	900	azobisisobutyronitrile

- Grafting process of GMA onto PCL has been performed using two approaches, normal melt processing and under supercritical CO₂ (new method).
- Grafting at lower temperature lowers thermal degradation of PCL backbone

FD as function of GMA intakes

- FD increases along with the GMA
- After a certain amount, initiator intake gives a low effect to the FD
- Different FD and compatibilizer intakes were used to investigate changes in mechanical properties of the blends

Thermal degradation study of PCL-g-GMA

• There was no significant degradation/cross linking observed from the reactions in supercritical carbon dioxide, some changes were observed from reactions in the melt.

The effect of compatibilizer FD to the blends mechanical properties

• Functionalization degree of the compatibilizer does not significantly affect the mechanical properties.

The effect of compatibilizer amount to the blends mechanical properties

• Intake of the compatibilizer does not significantly affect the mechanical properties.

Ternary blend comparison

• Blends with compatibilizers prepared in supercritical carbon dioxide have better mechanical properties with respect to those with compatibilizers prepared in the melt.

Conclusions

- Grafting process of GMA onto PCL has been performed using two approaches, normal melt processing and under supercritical CO₂.
- There was no significant degradation/cross linking observed from the reactions in supercritical carbon dioxide, some changes were observed from reactions in the melt.
- The use of compatibilizers improves the mechanical properties of the blends.
- The amount and functionalization degree of the compatibilizer does not significantly affect the mechanical properties.
- Blends with compatibilizers prepared in supercritical carbon dioxide have better mechanical properties with respect to those with compatibilizers prepared in the melt.

4-8-2011 15:54:11 | 17

Discussions

Thank You